Gas bubbles effervesce from a mound of muck on the seafloor in a deep submarine canyon off the west coast of Canada. Microbes beneath the sediment belch the bubbles after feasting on the ancient remains of algae, sea critters and their poop: a primordial stew that’s been simmering since long before humans walked the Earth.
This gassy oasis attracts an odd collection of critters. Worms writhe in the goo, clams bask in the bacteria, herds of sea cucumbers dine on diatoms and sea stars scurry across the pitch black landscape. But the strangest inhabitant of all is a robot named Wally, whose every move is controlled by a human sea spy viewing the entire scene from a lab 8,000 kilometers away in Bremen, Germany.
Equipped with scientific instruments designed to explore this alien world, the deep-sea crawler is just one part of an unprecedented effort to check the ocean’s vital signs in real time. The NEPTUNE observatory — a ring of six underwater research stations connected to the Internet with fiber optic cables — is the first online observatory to brave the depths of the abyss. From their vantage points in labs and living rooms around the world, oceanic explorers now plug into an ever-changing world once cloaked in darkness, and tap into the pulse of the ocean as it lives and breathes.
Traditionally oceanographers have gleaned insight into the ocean through observations made on research cruises conducted for a few weeks a year at great cost. But these sparse samplings provide only snapshots of the sea’s shifting moods, says Kate Moran, NEPTUNE’s director. Add the emerging effects of climate change into the mix, and single-shot sampling can be woefully inadequate for scientific study, Moran says. “It can be almost anecdotal.”
Cycles that drive changes in the ocean’s chemistry and organisms take place over hours, days, seasons, years and even decades — timescales NEPTUNE can track. As global levels of carbon dioxide rise, changes in storm frequency, ocean temperature and acidity could have profound impacts on these delicate cycles. “We’re in a period where the oceans are changing very quickly,” says marine ecologist Kim Juniper of Canada’s University of Victoria, who oversees NEPTUNE’s scientific research. “We know that tomorrow’s oceans are not going to be the same oceans we’ve been studying for the last century.”
NEPTUNE researchers examine an astounding diversity of underwater worlds. Plunging into the ocean off the west coast of Vancouver Island, the more than 800 kilometers of fiber optic cables that connect the research stations stretch across the continental shelf, plummet down the slope and across an abyssal plain, and skirt hydrothermal vents near a mid-ocean ridge where the Earth gives birth to new ocean crust. Researchers endowed the observatory’s six nodes with instruments that measure the ocean’s changing temperature and chemistry, cameras that spy underwater creatures, hydrophones that listen to passing whales and seismometers and tsunami detectors that measure hazards as they happen.
From their vantage point on dry land, NEPTUNE’s deep-sea explorers have made connections between storms raging on the sea surface and plumes of gas bubbling out of the seafloor hundreds of meters below. They’ve picked up sounds of creatures not glimpsed in these waters for half a century, spotted marine mammals behaving in unexpected ways and measured the weight of tsunamis passing overhead. Some of the discoveries have even been made by intrepid citizen scientists scouring through NEPTUNE’s open online network from home.
“This in many ways has been an exploration, rather than a classic hypothesis testing experiment,” Juniper says. “You discover unexpected connections not just by seeing an event, but by seeing all parts of the puzzle.”