What detecting gravitational waves means for the expansion of the universe | Science News

ADVERTISEMENT

MISSION CRITICAL

Support credible science journalism.

Subscribe to Science News today.


News

What detecting gravitational waves means for the expansion of the universe

Speed of spacetime ripples rules out some alternatives to dark energy

By
5:34pm, October 24, 2017
colliding neutron stars

BANG, FLASH  Light waves and gravitational waves from a pair of colliding neutron stars reached Earth at almost the same time, ruling out theories about the universe based on predictions that the two kinds of waves might travel at different speeds. 

Sponsor Message

Ripples in spacetime travel at the speed of light. That fact, confirmed by the recent detection of a pair of colliding stellar corpses, kills a whole category of theories that mess with the laws of gravity to explain why the universe is expanding as fast as it is.

On October 16, physicists announced that the Advanced Laser Interferometer Gravitational-Wave Observatory, LIGO, had detected gravitational waves from a neutron star merger (SN Online: 10/16/17). Also, the neutron stars emitted high-energy light shortly after merging. The Fermi space telescope spotted that light coming from the same region of the sky 1.7 seconds after the gravitational wave detection. That observation showed for the first time that gravitational waves, the shivers in spacetime set off when massive bodies move, travel at the speed of light to within a tenth of a trillionth of a percent.

Within a day, five papers were posted at arXiv.org mourning hundreds of expanding universe theories that predicted gravitational waves should travel faster than light — an impossibility without changes to Einstein’s laws of gravity. These theories “are very, very dead,” says the coauthor of one of the papers, cosmologist Miguel Zumalacárregui of the Nordic Institute for Theoretical Physics, or NORDITA, in Stockholm. “We need to go back to our blackboards and start thinking of other alternatives.”

In the 1990s, observations of exploding stars showed that more distant explosions were dimmer than existing theories predicted. That suggested that the universe is expanding at an ever-increasing rate (SN: 10/22/11, p. 13). Cosmologists have struggled ever since to explain why.

The most popular explanation for the speedup is that spacetime is filled with a peculiar entity dubbed dark energy. “You can think of it like a mysterious fluid that pushes everything apart and counteracts gravity,” says cosmologist Jeremy Sakstein of the University of Pennsylvania, coauthor of another new paper.

Story continues after image

In the simplest version of this theory, the density of this dark energy has not changed over the history of the universe, so physicists call it a cosmological constant. This doesn’t require any changes to gravity — which is good, because gravity has been well-tested inside the solar system.

The cosmological constant idea matches observations of the wider universe, but it has some theoretical difficulties. Dark energy is about 120 orders of magnitude weaker than theorists calculate it should be (SN Online: 11/18/13), a mismatch that makes scientists uncomfortable.

Also, different methods for measuring the rate of expansion come up with slightly different numbers (SN: 8/6/16, p. 10). Measurements based on exploding stars suggest that distant galaxies are speeding away from each other at 73 kilometers per second for each megaparsec (about 3.3 million light-years) of space between them. But observations based on the cosmic microwave background, ancient light that encodes information about the conditions of the early universe, found that the expansion rate is 67 km/s per megaparsec. The disagreement suggests that either one of the measurements is wrong, or the theory behind dark energy needs a tweak.

So instead of invoking a substance to counteract gravity, theorists tried to explain the expanding universe by weakening gravity itself. Any modifications to gravity need to leave the solar system intact. “It’s quite hard to build a theory that accelerates the universe and also doesn’t mess up the solar system,” says cosmologist Tessa Baker of the University of Oxford, coauthor of still another paper.

These theories take hundreds of forms. “This field of modified gravity theories is a zoo,” says Baker. Some suggest that gravity leaks out into extra dimensions of space and time. Many others account for the universe’s speedy spreading by adding a different mysterious entity — some unknown particle perhaps — that drains gravity’s strength as the universe evolves.

But the new entity would have another crucial effect: It could slow the speed of light waves, similar to the way light travels more slowly through water than through air. That means that the best alternatives to dark energy required gravitational waves to travel faster than light — which they don’t.

Justin Khoury, a theoretical physicist at the University of Pennsylvania who has worked on several of the alternative gravity theories but was not involved in the new papers, was surprised that one gravitational-wave observation ruled out so many theories at once. He’s hardly disappointed, though.

“The fact that we’re learning something about dark energy because of this measurement is incredibly exciting,” he says.

Observing gravitational waves and light waves at the same time offers a third, independent way to measure how fast the universe is expanding. For now, that rate lies frustratingly right between the two clashing measurements scientists already had, at 70 km/s per megaparsec. But it’s still imprecise. Once LIGO and other observatories have seen 10 or 20 more neutron star collisions, researchers should be able to tell which measurement is correct and figure out whether dark energy needs an update, Zumalacárregui says.

“Gravitational waves may kill these models, but eventually they have the potential to tell us if this discrepancy is for real,” he says. “That’s something that is in itself very beautiful.”

Citations

P. Creminelli and F. Vernizzi. Dark energy after GW170817. arXiv:1710.05877v1. Posted October 16, 2017.

J. M. Ezquiaga and M. Zumalacárregui. Dark energy after GW170817. arXiv:1710.05901v1. Posted October 16, 2017.

J. Sakstein and B. Jain. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. arXiv:1710.05893v1. Posted October 16, 2017.

H. Wang et al. GW170817/GRB 170817A/AT2017GFO association: some implications for physics and astrophysics. arXiv:17170.05805v1. Posted October 16, 2017.

T. Baker et al. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. arXiv:1710.06394v1. Posted October 17, 2017.

The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration. A gravitational-wave standard siren measurement of the Hubble constant. Nature. Published online October 16, 2017. doi: 10.1038/nature24471.

Further Reading

E. Conover. Neutron star collision showers the universe with a wealth of discoveries. Science News Online, October 16, 2017.

E. Conover. Debate accelerates on universe’s expansion speed. Science News. Vol. 190, August 6, 2016, p. 10.

T. Siegfried. Trust in gravity isn’t always the best astronomy policy. Science News Online, May 20, 2014.

Get Science News headlines by e-mail.

More on Gravitational waves

From the Nature Index Paid Content