By Andrew Grant
New measurements have captured the universe’s expansion when it was slowing down 11 billion years ago, before a mysterious entity called dark energy took over and began spurring the cosmos to expand faster and faster. The measurements, reported online November 12 at arXiv.org, are an important step toward understanding what dark energy is and how it works.
About 15 years ago, astronomers discovered that the universe’s expansion is accelerating by cataloging spectacular stellar explosions called type 1a supernovas. Because each explosion emits almost exactly the same amount of light, astronomers can use a supernova’s observed brightness to determine its distance, and then measure its redshift, or how much its light is stretched, to determine how fast the supernova is moving away from Earth. Astronomers Adam Riess of Johns Hopkins University, Saul Perlmutter of the University of California, Berkeley and Brian Schmidt of Australian National University shared the 2011 Nobel Prize for their work using this technique to reveal that the universe’s expansion is currently accelerating and has been for the last 5 billion years or so.
But as bright as supernovas are, they are difficult to see deep in the cosmos, at distances corresponding to the time when the universe was only a few billion years old. So an international team of scientists with the Baryon Oscillation Spectroscopic Survey, or BOSS, employs a different method. They use the 2.5-meter Sloan telescope at New Mexico’s Apache Point Observatory to collect light produced by feasting supermassive black holes that thrived a couple billion years after the dawn of the universe 13.7 billion years ago.
As that light makes its long journey toward Earth, it occasionally runs into clouds of hydrogen gas and gets partially absorbed. BOSS scientists crunched the data on the light of almost 50,000 black hole emissions to create a map of where those gas clouds are and, using redshifts, how fast they are receding.