Extreme Climate Survey
Science News is collecting reader questions about how to navigate our planet's changing climate.
What do you want to know about extreme heat and how it can lead to extreme weather events?
“She’s a very curious person, so she’s always learning new things,” says Paul Alivisatos, the vice chancellor for research at the University of California, Berkeley, who mentored Dionne when she was a postdoc there. Plus, “she’s an extremely deep and rigorous thinker.”
Dionne, now at Stanford University, studies nanophotonics, the way that light interacts with matter on very small scales. Her interest in light and materials began in childhood, she recalls, when she was fascinated by the blue morpho butterfly.
The insect’s wings sport an azure hue that comes not from pigments, like most colors found in living things, but from tiny nanostructures on the wings’ surface (SN: 6/7/08, p. 26 ). When light reflects off the structures, blue wavelengths are amplified, while wavelengths corresponding to other colors are canceled out.
That early interest in tricks of light led Dionne to begin wielding it as a tool during graduate school at Caltech and then her postdoc at UC Berkeley. Then and now, says Alivisatos, “she has consistently done very beautiful work.”
At Caltech, Dionne and colleagues created a bizarre optical material in which light bends backward. As light passes from one material to another — say, from air to water — the rays are deflected due to a property called the index of refraction. (That’s why a straw in a drinking glass appears to be broken at the water’s surface.) In natural materials, light always bends in the same direction. But that rule gets flipped around in oddball nanomaterials with a negative index of refraction.
Dionne’s material, reported in Science in 2007, was the first that worked with visible light (SN: 3/24/07, p. 180 ). Because they can steer light around objects to hide the objects from view, such materials could be used to create rudimentary versions of invisibility cloaks — though so far all attempts are a far cry from Harry Potter’s version. Dionne is now working on a “squid skin” with an adjustable refractive index, which would mimic the shifting camouflage patterns of the stealthy cephalopod.
Another focal point of Dionne’s research is harnessing light to separate mixtures of mirror-image molecules. Right- and left-handed versions of these molecules are perfect reflections of each other, like a person’s right and left hands. The two types are so similar that scientists struggle to separate them, which can cause problems for drugmakers. In drugs, these molecules can be two-faced; one might relieve pain, while the other causes unwanted side effects.
To separate molecules and their mirror images, Dionne is developing techniques that use circularly polarized light, in which the light’s wiggling electromagnetic waves rotate over time. Such light can interact differently with right- and left-handed molecules, for example, breaking apart one version while leaving the other unscathed.
Normally, the light’s effect is very weak. But in a theoretical study published in ACS Photonics last December, Dionne and colleagues showed that adding nanoparticles to the mix could enhance the process. These tiny particles behave like antennas that concentrate the light onto nearby molecules, helping break them apart. Dionne is now working to implement the technique.
GLOW WORM Nanoparticles fed to this Caenorhabditis elegans worm glow when illuminated with infrared light. Their color changes as they are squeezed in the worm’s digestive tract. Alice Lay/Dionne Lab
She and her colleagues have also created nanoparticles that, when illuminated with infrared light, emit visible light.
The color of that light changes depending on how tightly the nanoparticle is squeezed
, the team reported in
Nano Letters
in June. In keeping with her penchant for creative exploration in the lab, Dionne and colleagues fed these nanoparticles to roundworms, the nematode
Caenorhabditis elegans
, to study the forces exerted as a transparent worm squeezed a meal through its digestive tract.
“You can see the nanoparticles change colors throughout,” Dionne says. She plans to use the technique to reveal more sinister squeezing. Cancer cells exert stronger mechanical forces on their environment than healthy cells, so such nanoparticles could one day be used to test for cancer, she says. Dionne is now cooking up other creative ways to use these nanoparticles. In collaboration with other researchers, she hopes to marshal her color-changing nanoparticles to understand how jellyfish move and how plants take a drink.
Dionne’s work exploits light to reveal hidden forces — and as a force for good. “She’s done amazing work,” says materials scientist Prineha Narang of Harvard University. Narang was a graduate student at Caltech after Dionne left, and had heard chatter about Dionne before meeting her in person. “The legend of Jen Dionne was definitely all over,” Narang says. So Dionne has made a start at establishing her scientific legacy — even before that chat with her future grandchildren.