Extreme Climate Survey
Science News is collecting reader questions about how to navigate our planet's changing climate.
What do you want to know about extreme heat and how it can lead to extreme weather events?
Acanthopleura granulata
) were much more remarkable than anyone had realized. Their unusual aragonite lens can detect the difference between a looming black circle and a generally gray field of vision. Researchers could tell because chitons clamped their shells defensively to the bottom when a scary circle appeared but not when an artificial sky turned overall shadowy.
Now Li and colleagues present more direct evidence of how a chiton sees. They attached a chiton lens to the end of a microscope objective in a water bath. Looking directly through the aragonite lens at a fish-shaped silhouette, the researchers detected a somewhat blurred, but recognizable, shape.
The lens achieves its clarity via tweaks in structure, the researchers found. A chiton lens is made of basically the same material as the unseeing armor around it. But in the lens, the component grains of aragonite are bigger. This means incoming light has to pass through fewer grain-to-grain transitions and less of the material between grains. Reducing grain-to-grain jumps means less scattering of light into a dim haze.
And that’s not all. Grains have orderly internal structures, and the lens grains are more likely to be oriented in directions like those of their neighbors. More harmonious orientations also reduce the scattering of light and preserve clarity in the incoming image.
The chiton lenses may be pretty good, but the small number of light-catching receptors in the retina below the lens probably reduces image quality. Based on the number of receptors, the researchers calculated that each eye could only report the silhouette as a ragged, elongated blur. That blur, however, may be enough for a chiton to recognize an incoming predator.
Other techniques could give a better idea of how receptor cells pick up the image, says visual scientist Dan-Eric Nilsson of the University of Lund in Sweden. He would like to see more analysis, such as direct physiological measurements of electrical impulses jolting through individual receptor cells.
Whatever the eyes see, they introduce weak spots in the armor, Li says. Poking parts of chiton shell with probes broke lenses into sunbursts of spreading radial cracks; the same amount of force didn’t break surrounding armor.
Armor does accommodate those weak spots, Li suggests. The eyes lie in the valleys on the nubbly armor surface. Thus blunt incoming threats probably bang the strong hilltops of the armor before poking the sunken eyes. Also, a chiton grows eyes by the hundreds and keeps producing them as new armor forms along the edges of expanding plates on its back. Eyes crack and erode, but there are lots, and new ones form to continue the vigil.