A mutation that helped make a laboratory version of the H5N1 bird flu transmissible through the air nearly obliterates the ability of the virus to latch onto avian cells. At the same time, the mutation slightly boosts the virus’s ability to infect human cells, an international team of researchers reports April 24 in Nature.
The finding follows up on controversial research published last year that transformed the H5N1 virus, a microbe usually restricted to birds, into one that could spread between ferrets through the air (SN: 6/2/12; p. 20; SN: 7/14/12, p. 8). Some scientists and policymakers questioned whether such research should be done at all. Others argued that the work could help spot viruses poised to become pandemic strains and might point to vaccine targets.
The new study shows that a mutation can have different effects in different flu strains, something that might not have been discovered without the earlier research.
In the course of transitioning from a bird flu to a human disease, influenza viruses generally develop a preference for grasping sugar molecules called receptors on the surface of human cells. One common mutation that helps viruses do that, called Q226L, changes an amino acid in the hemagglutinin protein — the molecule that gives the virus the H in its name. Hemagglutinin acts as a grappling hook to snag cells, making easier for the virus to infect them. The Q226L mutation, which occurs in the experimental H5N1 work and in natural influenza strains that caused pandemics in 1957 and 1968, twists the hemagglutinin protein to better hang onto human cells.