Physicists have captured their first clear glimpse of the tangled web woven by particles called anyons.
The observed effect, known as braiding, is the most striking evidence yet for the existence of anyons — a class of particle that can occur only in two dimensions. When anyons are braided, one anyon is looped around another, altering the anyons’ quantum states. That braiding effect was spotted within a complex layer cake of materials, researchers report in a paper posted June 25 at arXiv.org.
“It’s absolutely convincing,” says theoretical physicist Frank Wilczek of MIT, who coined the term “anyon” in the 1980s. Theoretical physicists have long thought that anyons exist, but “to see it in reality takes it to another level.”
Fundamental particles found in nature fall into one of two classes: fermions or bosons. Electrons, for example, are fermions, whereas photons, particles of light, are bosons. Anyons are a third class, but they wouldn’t appear as fundamental particles in our 3-D universe. “It’s not something you see in standard everyday life,” says physicist Michael Manfra of Purdue University in West Lafayette, Ind., a coauthor of the study. But anyons can show up as disturbances within two-dimensional sheets of material. Technically “quasiparticles,” anyons are the result of collective movements of many electrons, which together behave like one particle.