Tree rings tell tale of drought in Mongolia over the last 2,000 years

The data could help in predicting future dry spells

TIMBER  A scientist cuts into an ancient pine tree in Mongolia to examine its rings, which are offering new insights into the region’s past climate.

Neil Pederson

A new analysis is shedding light on drought in Mongolia, both past and future.

By studying the rings of semifossilized trees, researchers constructed a climate history for the semiarid Asian nation spanning the last 2,060 years — going 1,000 years further back than previous studies.

It was suspected that a harsh drought from about 2000 to 2010 that killed tens of thousands of livestock was unprecedented in the region’s history and primarily the result of human-caused climate change. But the tree ring data show that the dry spell, while rare in its severity, was not outside the realm of natural climate variability, researchers report online March 14 in Science Advances.

“This is a part of the world where we don’t know about the past climate,” says Park Williams, a bioclimatologist at Columbia University’s Lamont-Doherty Earth Observatory in Palisades, N.Y., who was not involved with the study. “Having this record is a great resource for trying to understand past droughts in the region.”  

In recent years, many studies have sought to unsnarl the role of anthropogenic climate change from natural variability on extreme weather events (SN: 1/20/18, p. 6). Such work is necessary for more accurately predicting future climate trends and helping governments prepare for the most severe scenarios, says study coauthor Amy Hessl, a physical geographer at West Virginia University in Morgantown. This is especially true in countries like Mongolia that lack certain infrastructure, such as enough water reservoirs, to ease the impact of events like prolonged drought.

Hessl and her colleagues studied tree rings in hundreds of samples of Siberian pines, well-preserved by Mongolia’s naturally dry climate. A ring’s width indicates how much the tree grew in a year. In wet years, the rings are wider; in dry years, skinnier.

The recent dry spell was the severest in recorded history. But the rings showed that an even more severe drought took place around the year 800, long before anthropogenic climate change began.

Still, computer simulations suggest that about a third of the recent drought’s severity could have been caused by elevated temperatures linked to climate change, the researchers found. The finding is consistent with studies on how climate change has affected other recent droughts in South Africa and California.

Using computer simulations, Hessl and her colleagues conclude that droughts in coming decades may not be any worse than those seen in Mongolia’s past. The team predicts that as global temperatures rise over the next century, Mongolia will first become drier, then wetter. Increased heat initially will dry out the plains. But at a certain point, hot air holds more moisture, leading to increased precipitation.

Those climate patterns will likely guide how Mongolia develops, Hessl says, because they have in the past. In 2014, she and colleagues published a paper detailing how a 15-year period of unprecedented temperate and rainy conditions in 13th century Mongolia may have led to the rise of Genghis Khan (SN Online: 3/10/14).

More Stories from Science News on Climate

From the Nature Index

Paid Content