Venom hunters
Scientists probe toxins, revealing the healing powers of biochemical weapons
When the monitor lizard chomped into Bryan Fry, it did more than turn his hand into a bloody mess. Besides ripping skin and severing tendons, the lizard delivered noxious venom into Fry’s body, injecting molecules that quickly thinned his blood and dilated his vessels.
As the tiny toxic assassins dispersed throughout his circulatory system, they hit their targets with speed and precision, ultimately causing more blood to gush from Fry’s wound. Over millions of years, evolution has meticulously shaped these toxins into powerful weapons, and Fry was feeling the devastating consequences firsthand.
“I’ve never seen arterial bleeding before, and I really don’t want to ever see it again. Especially coming out of my own arm,” says Fry, a venom researcher at the University of Melbourne in Australia.
To unlock the molecular secrets of venom, Fry and other researchers have pioneered a burgeoning field called venomics. With cutting-edge methods, the scientists are teasing apart and cataloging venom’s ingredients, some of which can paralyze muscles, make blood pressure plummet or induce seizures by scrambling brain signals. Researchers are also learning more about how these toxins work.
Discovering venom’s tricks may allow scientists to rehabilitate these damaging molecules and convert them from destroyers to healers. Venom might be teeming with wonder drugs, for instance. After all, a perfect venom toxin works with lightning speed, remains stable for a long time and strikes its mark with surgical exactitude — attributes that drugmakers dream about.
Already, toxins from a Brazilian viper have provided the key molecule for blood pressure–lowering drugs known as ACE inhibitors, and a medication based on cone snail venom alleviates types of chronic pain that even morphine can’t touch. George Miljanich, a researcher who helped develop the snail-derived drug, calls venom an “amazing soup” with “great potential as a source of new medicine.”
What’s more, researchers are stepping back in time to understand how the toxic proteins that make up venom evolved in different animals, revealing details on how beneficial proteins may have been recruited to the dark side and eventually become toxic. Such studies are also finding rapidly mutating toxin genes and describing how unique environmental conditions shape venoms in different animals.
Despite the occupational hazards, “It’s a great time to be doing this kind of research,” Fry says. “With the techniques we have today, it’s astounding what we can learn.”
What makes a venom