Chemical transformations in minerals deep beneath the seafloor could explain why Indonesia’s 2004 mega-earthquake was unexpectedly destructive, researchers report in the May 26 Science.
The magnitude 9.2 quake and the tsunami that it triggered killed more than 250,000 people, flattened villages, and swept homes out to sea across Southeast Asia. It was one of the deadliest tsunamis in recorded history.
“It raised a whole bunch of questions, because that wasn’t a place in the world where we thought a magnitude 9 earthquake would occur,” says study coauthor Brandon Dugan, a geophysicist at the Colorado School of Mines in Golden.
The thick but stable layer of sediment where tectonic plates meet off the coast of the Indonesian island of Sumatra should have limited the power of an earthquake, seismologists had predicted. But instead, this quake was the third-strongest on record worldwide.