By Sid Perkins
Early on the morning of June 30, 1908, a massive explosion shook central Siberia. Witnesses told of a fireball that streaked in from the southeast and then detonated in the sky above the desolate, forested region. At the nearest trading post, about 70 kilometers away from the blast, people were reportedly knocked from their feet. Seismic instruments in the area registered ground motions equivalent to those of a magnitude-5 earthquake.
Effects of the event—often called the Tunguska blast, after a major river running through the area—weren’t restricted to Siberia. Sensitive barometers in England detected an atmospheric shock wave as it raced westward and then detected it again after it traveled around the world. High-altitude clouds that formed over the region after the event were so lofty that they caught light from beyond the horizon, illuminating the sky so much that people at locales in Europe and Asia could read newspapers outdoors at midnight.
A number of factors—including the site’s remote location, World War I and the Russian Revolution—prevented scientists from mounting an expedition to the blast zone for almost two decades, says physicist Giuseppe Longo of the University of Bologna in Italy. When researchers eventually reached the region, they found that a 2,150-square-kilometer patch of forest had been flattened, with most of the 80 million trees lying in a radial pattern. What the researchers didn’t find, however, was an obvious crater.