Latest Issue of Science News


News

Water not so squishy under pressure

In planets' cores, molecules may not compress tightly

When squeezed to pressures and temperatures like those inside giant planets, water molecules are less squeezable than anticipated, defying a set of decades-old equations used to describe watery behavior over a range of conditions.

Studying how molecules behave in such environments will help scientists better understand the formation and composition of ice giants like Uranus and Neptune, as well as those being spotted in swarms by planet hunters. The new work, which appears in the March 2 Physical Review Letters, also suggests that textbooks about planetary interiors and magnetic fields may need reworking.

Note: To comment, Science News subscribing members must now establish a separate login relationship with Disqus. Click the Disqus icon below, enter your e-mail and click “forgot password” to reset your password. You may also log into Disqus using Facebook, Twitter or Google.

X
This article is available only to subscribing members. Join SSP today or Log in.