By Peter Weiss
A few years after Francis H. Crick and James D. Watson unveiled the structure of DNA in 1953, they rocked the fledgling field of molecular biology again with a bold notion: Viruses are, in part, structured as crystals are. That idea captivated Donald L.D. Caspar and Aaron Klug, who then systematically applied what they knew about crystal geometry to classify and predict the structures that many viruses might assume. The motif that stood out time and again was a set of symmetries seen in various structures, including soccer balls, spherical geodesic domes, and the 20-sided, jewel-like shape known as the icosahedron. Since the 1960s, Caspar and Klug’s work has been the framework for explaining and predicting many of the most prevalent viral configurations.
Over half of all virus families have shells with icosahedral symmetry. Among their ranks are many harmful and deadly agents, including those responsible for herpes, polio, hepatitis, some cancers, and the common cold and other respiratory infections.