A gel cocktail uses the body’s sugars to ‘grow’ electrodes in living fish

A new technique harnesses the body’s chemistry to create the conducting material

A close up photo of a clear liquid forming a bubble on what appears to be a black and gold circuit board.

A new injectable gel (pictured) can react with the body’s sugars to “grow” an electrode inside living tissue, a study in zebrafish shows.


For the first time, researchers have harnessed the body’s own chemistry to “grow” electrodes inside the tissues of living fish, blurring the boundary between biology and machines.

The technique uses the body’s sugars to turn an injected gel into a flexible electrode without damaging tissues, experiments show. Zebrafish with these electrodes grown in their brains, hearts and tail fins showed no signs of ill effects, and ones tested in leeches successfully stimulated a nerve, researchers report in the Feb. 24 Science.

Someday, these electrodes could be useful for applications ranging from studying how biological systems work to improving human-machine interfaces. They also could be used in “bioelectronic medicine,” such as brain stimulation therapies for depression, Parkinson’s disease and other conditions (SN: 2/10/19).

Soft electronics aim to bridge the gap between soft, curvy biology and electronic hardware. But these electronics typically still must carry certain parts that can be prone to cracks and other issues, and inserting these devices inevitably causes damage to tissues.

“All the devices we have made, even though we have made them flexible, to make them more soft, when we introduce them, there will still be a scar. It’s like sticking a knife into the organ,” says Magnus Berggren, a materials scientist at Linköping University in Sweden. That scarring and inflammation can degrade electrode performance over time. 

Previous efforts to grow soft electronics inside tissues have drawbacks. One approach uses electrical or chemical signals to power the transformation from chemical soup to conducting electrodes, but these zaps also cause damage. A 2020 study got around this problem by genetically modifying cells in worms to produce an engineered enzyme that does the job, but the new method achieves its results without genetic alterations.

Berggren and colleagues’ electrodes instead exploit a natural energy source already present in the body: sugars. The gel cocktail contains molecules called oxidases that react with the sugars — glucose or lactate — to produce hydrogen peroxide. That then activates another ingredient in the cocktail, an enzyme called hydrogen peroxidase, which is the catalyst needed to transform the gel into a conducting electrode.

“The approach leverages elegant chemistry to overcome many of the technical challenges,” says biomedical engineer Christopher Bettinger of Carnegie Mellon University in Pittsburgh, who was not involved in the study.

To test the technique, the researchers injected the cocktail into the brains, hearts and tail fins of transparent zebrafish. The gel turns blue when it becomes conductive, giving a visual readout of its success.

“The beautiful thing is you can see it: The zebrafishes’ tail changes color, and we know that blue indicates a conducting polymer,” says materials scientist Xenofon Strakosas, also of Linköping University. “The first time I saw it, I thought ‘Wow, it’s really working!’”

The fish appeared to suffer no ill effects, and the researchers saw no evidence of tissue damage. In partially dissected leeches, the team showed that delivering a current to a nerve via a soft electrode could induce muscle contractions. Ultimately, devices like this could be paired with various wireless technologies in development.

Long-term implant performance remains to be determined, however. “The demonstrations are impressive,” Bettinger says. “What remains to be seen is the stability of the electrode.” Over time, substances in the body could react with the electrode materials, degrading it or even producing toxic substances.

The team still needs to refine how precisely the electrodes can stimulate nerves, says chemical engineer Zhenan Bao of Stanford University, who was not involved in the work. She and colleagues developed the way to “grow” electrical components using genetic modifications. Ensuring stimulation is concentrated where it’s needed for a treatment, while preventing the leakage of current to unwanted regions will be important, she says.

In the new study, the relative abundance of different sugars in different tissues determines exactly where electrodes form. But in the future, a component of the main ingredient could be swapped out for elements that attach to specific bits of biology to make targeting much more precise, Berggren says. “We’re conducting experiments right now where we’re trying to bind these materials directly on individual cells.” Notes Strakosas: “There are some applications where precision is really important; that’s where we have to invest effort.” 

More Stories from Science News on Health & Medicine

From the Nature Index

Paid Content