High-tech cloth could make summer days a breeze

Tiny pore-pocked plastic lets heat out yet blocks light

polyester, cotton, nanoPE

COOL CLOTH Traditional textiles like polyester and cotton tend to trap body heat, but a plastic material called nanoPE lets heat escape. Researchers are looking at ways of using the material to make a high-tech fabric.

YI CUI GROUP/STANFORD UNIVERSITY (NanoPE); JAMES LOOMIS/ UNIVERSITY OF AUCKLAND (polyester, cotton)

Plastic cling wrap with nano-sized pores could give “cool clothes” a new meaning.

The material lets heat escape, instead of trapping it like traditional fabrics, Stanford University materials scientist Yi Cui and colleagues report in the Sept. 2 Science. It could help people keep cool in hot weather, Cui says, and even save energy by reducing the use of air conditioning.

“It’s a very bold new idea,” says MIT physicist Svetlana Boriskina, who wrote an accompanying commentary. Demand for the new material could be far-reaching, she says. “Every person who wears clothes could be a potential user of this product.”

Current cooling devices include wearable fans and wicking fabrics; both rely on evaporation to cool human skin. But skin also sheds heat in another way — as infrared radiation. Clothing holds this heat close to the body, Cui says. If infrared radiation could instead pass through fabric, he reasoned, people would feel a lot cooler.

But the fabric would have to be transparent only to infrared wavelengths. To visible light, it would need to be opaque. Otherwise, the clothing would be see-through.

Cui found just one material that satisfied both requirements: a commercially available plastic used in lithium-ion batteries. The material, called nanoporous polyethylene, or nanoPE, is a cling wrap‒like plastic that lets infrared radiation through. But unlike cling wrap, the material isn’t clear: It blocks visible light.

Tiny pores speckled throughout the fabric act as obstacles to visible light, Boriskina says. When blue light, for example, hits the pores, it scatters. So do other colors. The light “bounces around in different directions and scrambles together,” she says. To human eyes, the resulting color is white.

The pores scatter visible light because they’re both in the same size range: The diameters of the pores span 50 to 1,000 nanometers, and the wavelengths of visible light range from 400 to 700 nanometers. Infrared light emitted by the body has a much larger wavelength, 7,000 to 14,000 nanometers, so the plastic’s tiny pores can’t block it. To infrared light, the pores are barely bumps in the road, not barriers.

The pores are kind of like small rocks at a beach, Boriskina says. They’ll interfere with the motion of small waves, but big waves will wash right over.

Cui and colleagues tested nanoPE by laying it on a hot plate warmed up to human skin temperature — 33.5° Celsius. NanoPE raised the “skin” temperature by just 0.8 degrees(to 34.3° C). “But when you put on cotton, my God, it rose to 37,” Cui says. “It’s hot!”

The researchers also tried to make nanoPE more wearable than plastic wrap. They coated it with a water-wicking chemical, punched holes in it to make it breathable, and layered it with cotton mesh. Now, the team is working on weaving the fabric to make it feel more like traditional textiles.

“Within five years, I hope someone will start wearing it,” Cui says. “And within 10 years, I hope most people will be wearing it.”

More Stories from Science News on Materials Science

From the Nature Index

Paid Content