This material uses energy from ambient light to kill hospital superbugs | Science News

ADVERTISEMENT

REAL SCIENCE. REAL NEWS.

Help us keep you informed.

Support Science News.


News in Brief

This material uses energy from ambient light to kill hospital superbugs

In lab tests, the quantum dot polymer nearly eliminated two drug-resistant strains of bacteria

By
7:00am, April 10, 2018
hospital

STERILE SURFACES  A newly developed coating uses overhead light to trigger bacteria-killing molecules and could be used in hospitals to help stop the spread of some infections.

Sponsor Message

PHOENIX — A new material that harnesses the power of ambient light to produce bacteria-killing molecules could help stem the spread of hospital infections, including those with drug-resistant bacteria.

About 1 in 10 patients worldwide get an infection while receiving treatment at a hospital or other health care facility, according to the World Health Organization. “Contaminated hospital surfaces play a key role in spreading those infections,” said Ethel Koranteng, a chemist at University College London, on April 5 at the Materials Research Society spring meeting.

Koranteng and colleagues developed a material to make hospital surfaces self-disinfecting. Naturally antimicrobial metals such as copper and steel are difficult to sculpt around uneven surfaces. But the new polymer-based material could be fashioned into a flexible film that covers computer keyboards, or molded into rigid, plasticlike casings that enclose phone handles, bedrails and other surfaces especially prone to contamination.

Unlike other polymer-based antimicrobial coatings that rely on a spritz of water to release bug-killing particles, the new material is activated by overhead lighting (SN: 2/3/07, p. 75).

The covering is made of polyurethane embedded with tiny semiconductor nanoparticles called quantum dots and particles of a purple dye called crystal violet (SN: 7/11/15, p. 22). When the quantum dots absorb ambient light, they transfer some of that energy to nearby dye particles, causing the crystal violet to release a kind of high-energy oxygen molecule that kills microbes. 

In lab tests, the material killed 99.97 percent of MRSA, the strain of Staphylococcus aureus that is resistant to methicillin and other antibiotics, and 99.85 percent of a multidrug-resistant strain of E. coli. For both experiments, the researchers used much higher concentrations of microbes than those typically found on hospital surfaces, Koranteng said.

Citations

E. Koranteng et al. Light-activated surfaces for reducing hospital acquired infections. Materials Research Society meeting, Phoenix, April 5, 2018.

Further Reading

M. Temming. Superbugs may meet their match in these nanoparticles. Science News. Vol. 192, November 11, 2017, p. 7.

A. Witze. Quantum dots get a second chance to shineScience News. Vol. 188, July 11, 2015, p. 22.

A. Cunningham. Savvy skins. Science News. Vol. 171, February 3, 2007, p. 75.

Get Science News headlines by e-mail.

More from Science News

From the Nature Index Paid Content