‘Goldilocks’ stars may pose challenges for any nearby habitable planets

Far-ultraviolet radiation from orange dwarfs could endanger planetary atmospheres

illustration of the 70 Ophiuchi double-star system

Orange dwarfs, such as those of the nearby double-star system 70 Ophiuchi (illustrated), could have life-bearing planets — but not if far-ultraviolet light leads to the destruction of their atmospheres.

Chris Butler/Science Source

If you’re an aspiring life-form, you might want to steer clear of planets around orange dwarf stars.

Some astronomers have called these orange suns “Goldilocks stars” (SN: 11/18/09). They are dimmer and age more slowly than yellow sunlike stars, thus offering an orbiting planet a more stable climate. But they are brighter and age faster than red dwarfs, which often spew large flares. However, new observations show that orange dwarfs emit lots of ultraviolet light long after birth, potentially endangering planetary atmospheres, researchers report in a paper submitted March 29 at arXiv.org.

Using data from the Hubble Space Telescope, astronomer Tyler Richey-Yowell and her colleagues examined 39 orange dwarfs. Most are moving together through the Milky Way in two separate groups, either 40 million or 650 million years old.

To Richey-Yowell’s surprise, she and her team found that the ultraviolet flux didn’t drop off from the younger orange stars to the older ones — unlike the case for yellow and red stars. “I was like, `What the heck is going on?’” says Richey-Yowell, of Arizona State University in Tempe.

In a stroke of luck, another team of researchers supplied part of the answer. As yellow sunlike stars age, they spin more slowly, causing them to be less active and emit less UV radiation. But for orange dwarfs, this steady spin-down stalls when the stars are roughly a billion years old, astronomer Jason Lee Curtis at Columbia University and colleagues reported in 2019.

“[Orange] stars are just much more active for a longer time than we thought they were,” Richey-Yowell says. That means these possibly not-so-Goldilocks stars probably maintain high levels of UV light for more than a billion years.

And that puts any potential life-forms inhabiting orbiting planets on notice. Far-ultraviolet light — whose photons, or particles of light, have much more energy than the UV photons that give you vitamin D — tears molecules in a planet’s atmosphere apart. That leaves behind individual atoms and electrically charged atoms and groups of atoms known as ions. Then the star’s wind — its outflow of particles — can carry the ions away, stripping the planet of its air.

But not all hope is lost for aspiring life-forms that have an orange dwarf sun. Prolonged exposure to far-ultraviolet light can stress planets but doesn’t necessarily doom them to be barren, says Ed Guinan, an astronomer at Villanova University in Pennsylvania who was not involved in the new work. “As long as the planet has a strong magnetic field, you’re more or less OK,” he says.

Though far-ultraviolet light splits water and other molecules in a planet’s atmosphere, the star’s wind can’t remove the resulting ions if a magnetic field as strong as Earth’s protects them. “That’s why the Earth survived” as a life-bearing world, Guinan says. In contrast, Venus might never have had a magnetic field, and Mars lost its magnetic field early on and most of its air soon after.

“If the planet doesn’t have a magnetic field or has a weak one,” Guinan says, “the game is over.”

What’s needed, Richey-Yowell says, is a study of older orange dwarfs to see exactly when their UV output declines. That will be a challenge, though. The easiest way to find stars of known age is to study a cluster of stars, but most star clusters get ripped apart well before their billionth birthday (SN: 7/24/20). As a result, star clusters somewhat older than this age are rare, which means the nearest examples are distant and harder to observe.

More Stories from Science News on Astronomy

From the Nature Index

Paid Content