If cable TV systems had a channel called The Cancer Network, doctors would be wise to tune in.
But there’s no such channel. So for now, they’ll just have to read articles in scientific journals that publish papers on the science of networks. Scientists in the new field of systems biology have made a lot of progress in understanding the networks of molecular interactions inside cancer cells. Some of the recent results are deserving of prime time.
In decades past, scientists have not possessed effective mathematical tools for teasing out all the causes and effects underlying malignancies and metastasis. But new methods are now available for describing how nodes are linked in all sorts of complex systems. And just as the math has become available to analyze cellular networks, huge databases of genetic data have been accumulating thanks to new gene-reading technology. So the tools provided by network math can begin to pry valuable secrets out of cancer’s networks.
Cancer cells house very complex networks. In some networks molecules are the nodes, linked to each other by participating in mutual chemical reactions. In genetic networks, the genes that encode the blueprints for molecules are the nodes, linked when a molecule encoded by one gene influences the activity of another gene. Understanding such networks helps scientists predict how cancerous cells will behave — how they would respond to anticancer drugs, for instance.