Vacuum’s quantum effect on light detected
Neutron star observations support 80-year-old prediction
Observations of the dense remnant of an exploded star have provided the first sign of a quantum effect on light passing through empty space.
Light from the stellar remnant, a neutron star located about 400 light-years away, is polarized, meaning that its electromagnetic waves are oriented preferentially in a particular direction like light that reflects off the surface of water (SN: 7/8/06, p. 24). That polarization is evidence of “vacuum birefringence,” a quantum effect first predicted 80 years ago caused by light interacting with the vacuum of space in a strong magnetic field. Scientists report the result in a paper to be published in the Feb. 11, 2017 issue of Monthly Notices of the Royal Astronomical Society.