By Andrew Grant
If all goes according to Mike Dunne’s plan, the United States will build its first nuclear fusion power plant by the end of the next decade. Sixteen times a second, as the National Ignition Facility’s program director for laser fusion energy envisions it, a two-millimeter-wide capsule of cryogenic hydrogen will drop into a steel chamber and get zapped by a 384-beam laser. Matter will transform into energy, driving a turbine that injects up to a gigawatt of clean power into the electrical grid.
But all is not going according to plan. To be viable, a fusion power plant would need to generate more energy than it consumed. Yet except in nuclear weapons, scientists have never produced a fusion reaction that does that. For a half-century they have strived for controlled fusion and been disappointed, only to adjust their theories, retry and be disappointed again.
The $3.5 billion National Ignition Facility at the Lawrence Livermore National Laboratory in California was supposed to end that cycle of frustration. Computer simulations showed that firing 192 beams from the world’s most powerful laser at a hydrogen capsule would compress it within a millionth of a second to 1/40th its original diameter, the equivalent of shrinking a basketball to the size of a pea. The swiftness of that implosion would cause the hydrogen fuel to ignite in a brief, self-sustaining fusion reaction releasing a helium nucleus, a neutron — and up to 100 times as much energy as the laser delivered.