A four-legged robot hints at how ancient tetrapods walked
Orobates pabsti may have had a more developed gait that previously thought
Orobates pabsti lived between 280 million and 290 million years ago, but it was pretty advanced at doing the locomotion.
Using computer simulations, re-created skeletons, fossil trackways and a walking robot dubbed the OroBOT, scientists found that this ancient four-footed creature had a surprisingly efficient gait. The result suggests that developing a more advanced way of walking may not have been as closely linked to the later diversification of tetrapods as once thought, the researchers report January 17 in Nature.
Scientists care about how O. pabsti might have moved because the animal was one of the earliest amniotes, a group that arose around 350 million years ago and includes both reptiles and mammals. Unlike amphibians, which have aquatic young, amniotes can live entirely on land. Protective membranes surrounding embryos allow amniotes to bypass a tadpole-type life stage in water: Reptile (including bird) eggs can be laid on land in nests; mammal embryos stay within the mother.
The amniotic membrane “is regarded as a key evolutionary innovation, to be able to colonize different habitats,” says John Nyakatura, an evolutionary biologist at the Humboldt University of Berlin who led the new study.
Understanding how early amniotes walked on land could help scientists better understand the origins of amniotes themselves, and how they eventually diversified across the continents, Nyakatura says. “Orobates, our focus fossil in this story, is a very close cousin to the last common ancestor of mammals and reptiles,” he says.
Researchers first described O. pabsti in 2004, following the discovery of beautifully preserved fossils of the creature at a site in central Germany known as the Bromacker locality. “The preservation is phenomenal,” says Stuart Sumida, a vertebrate paleontologist at California State University, San Bernardino who was not involved in the new study. “These are things preserved from the tip of the nose to the tip of the tails,” Sumida says. “They are so well preserved that we can generate hypotheses about how they moved.”